
McGraw-Hill © 2010 The McGraw-Hill Companies, Inc. All rights reserved. 

Chapter 11 

User Controls 



McGraw-Hill 11-2 

Objectives 

• Create a Windows user control using inheritance 
from an existing control type 

• Add a new user control to a form 

• Add properties to a user control 

• Raise an event in a control class and write code 
to handle the event in a form 

• Create a new composite control by combining 
preexisting controls 

• Create a Web user control and add it to a Web 
page 



McGraw-Hill 11-3 

Windows User Controls 

• User controls are created by the 

programmer 

• A composite control is made up of more 

than one individual control 

• Constituent controls are the individual 

controls that make up the composite control 

• New user control can be added to the 

toolbox and used in other Windows projects 



McGraw-Hill 11-4 

The Control Author 

versus the Developer 

• The author creates, tests, and compiles 

the control and it appears in the toolbox 

• The developer uses the control 

• The author of a control must plan for the 

design-time and run-time behavior of the 

control 



McGraw-Hill 11-5 

Creating a New Control - 1 

• Begin a new project based on the Windows 

Forms Control Library template 

– Not available in Visual Basic Express Edition 

• Controls created in this type of project may be 

used in multiple Windows projects 

– Add a new UserControl to an existing project if the 

control will only be used in the current project 

• The new UserControl object appears as a 

design surface, similar to a form in a Designer 

window 



McGraw-Hill 11-6 

Creating a New Control - 2 

• Design the visual interface in the Designer 

window 

– Drag constituent controls to the design surface 

– The visual representation of the control will not be 

seen for an inherited control 

• View and modify the created class for the control 

in the Code Editor window 

– Class automatically inherits from the UserControl 

class 

• See the UserControl.Designer.vb file 



McGraw-Hill 11-7 

Inheriting from 

an Existing Control - 1 

• Inherit from most Windows Forms controls 

except the Progress Bar 

• New controls inherit all properties, 

methods, and events of the base class 

– Code can be written to override the behaviors 

– Add new properties, methods, and events for 

the derived control 

 



McGraw-Hill 11-8 

Inheriting from 

an Existing Control - 2 

• Create a customized control 

– Create a project based on the Windows 

Forms Control Library template 

– Modify the class name and the Inherits clause 

in the Designer.vb file 

– Add additional desired functionality 

– Build the DLL 

• After the DLL is created, create a Windows project 

to test the new control 



McGraw-Hill 11-9 

Creating an Inherited User 

Control – Step-by-Step 

• Create a new project 

• Add an event handler 

• Build the project 

• Test the user control in a form 

• Add controls to the form 

• Run the project 



McGraw-Hill 11-10 

Adding Properties to a Control 

• Set up new properties of a control class 

just like other classes 

• Declare a module-level private variable 

to hold the property and create Property 

procedures 

– Properties appear in the Properties window 

when an instance of the control is added to a 

form 



McGraw-Hill 11-11 

Setting Default 

Values for Properties 

• Set a property variable to an initial value 
– Provides the property with a default value 

• Add an instance of the control to a form 
– The default value appears in the Properties window 

– If the developer changes the value of the property, 
the new value is retained in the property 

– The control is initialized only once when added to the 
form 

– Changes made at design time are retained 

• The value of a ReadOnly property cannot be 
changed 
– The code for the control can change the value 



McGraw-Hill 11-12 

Adding Events to a Control - 1 

• Most objects can generate events 
– Also called raising events or firing events 

such as Click, DoubleClick, MouseUp, and 
Move 

– Events are caused by user action 
• A click or mouse move 

– Other events are generated by the system 
• A timer firing or the Form_Load event 

• Objects must either raise an event or 
throw an exception to which the form 
module can respond 



McGraw-Hill 11-13 

Adding Events to a Control - 2 

• An object that generates or raises an 

event is called the event source or the 

event provider 

• The object that responds to an event is 

called an event sink or an event consumer 

– User clicks a command button and form’s 

Button_Click event handler executes 

• Command button is event source 

• Form is the event sink 



McGraw-Hill 11-14 

Raising Events 

• Declare the event in the Declaration section of 

the class, include any arguments to be passed 

 Public Event InvalidDate(ByVal Message as String) 

• Raise the event in code 

– When a condition triggers the event, use the 

RaiseEvent statement 

 If Not DateTime.TryParse(Me.Text, TestDate) Then 
 ‘ Invalid date format, raise an event. 
 RaiseEvent InvalidDate(“Invalid date.”) 
End If 

 



McGraw-Hill 11-15 

Responding to Events 

• Any class can be an event sink and 
respond to events raised by an event 
source 

• Add a user control to a form 

– Drop down the Methods list in the Editor 
window 

– The event appears on the list 

• Write the code that is to execute when the 
event fires 



McGraw-Hill 11-16 

Creating a Composite 

User Control 

• Used to combine multiple controls into a 

single user control 

– Combine the ValidDateTextBox control with a 

label 

• Label can have a default Text property that can be 

modified by the application developer 



McGraw-Hill 11-17 

Create a New Composite 

User Control 

• Begin a new project based on the Windows Forms 
Control Library template 
– Leave the inheritance as a UserControl 

– Use the control’s visual designer, treat it just like a form 

– Add as many controls as needed 

– Name the constituent controls and refer to them as in any 
application 

 



McGraw-Hill 11-18 

Adding a Control to the Toolbox 

• Controls that have already been developed are 
not automatically added to the toolbox 
– Right-click on the toolbox and select Choose Item 

– In the Choose Toolbox Items dialog box, on the 
.NET Framework Components tab, click on the 
Browse button 

– Browse to find the control’s .dll file in its bin\Debug 
folder 

– Select the .dll file 

– Close the dialog box and the control appears in the 
toolbox 



McGraw-Hill 11-19 

Adding Constituent Controls 

• Add any controls or components from the 

toolbox to the design surface of the 

composite control 

– Set the constituent controls to anchor to all 

four edges of the user control 

• Interior controls will resize when the user control is 

resized 



McGraw-Hill 11-20 

Exposing Properties 

of Constituent Controls 

• Properties of the constituent controls are 

available inside the composite control, but 

not to the application developer 

• The control author determines which 

properties to expose to the developer 



McGraw-Hill 11-21 

Exposing the Events 

of the Constituent Controls 

• Any events of the constituent controls are 
available in the code of the composite control 
– Events are not available to the form on which the 

control is placed 

– Must declare the event in the composite control and 
pass the event along 

 ‘ Declare the event at the module level. 
Public Event InvalidDate(ByVal Message As String) 

• Code is written in the event handler for the 
constituent control 
– Raise the event or write additional code 



McGraw-Hill 11-22 

Using the Composite Control 

• After the control is created, test it in a form in the 
same manner as the inherited control 

• Add a new project for the test form 
– Add a reference to the project that holds the 

composite control 

– Add the control to the form 

– Use the Choose Items command if the new control 
does not appear in the toolbox 

• If modifying the control, close the user control’s 
designer before rebuilding 

• Rebuild the solution and re-add the control to 
the form to get the updated control 



McGraw-Hill 11-23 

Web User Controls 

• Web user controls work differently than 
Windows user controls 

– Think of a Web user control as a “mini-page” 
that can be displayed on many other pages 

• Create reusable pieces of an interface that 
contain HTML controls, server controls, 
and code 

• Use the ASP.NET Web Site template and 
add a WebUserControl to the project 



McGraw-Hill 11-24 

Creating a Web User 

Control – Step-by-Step - 1 

• Create the project 

• Design the user interface 

• Set up properties to allow the Web page to 
retrieve the values a user enters 

– Properties can be read only unless the Web 
page must be able to set initial values 

– When the value from a control holds the 
property, it is not necessary to declare 
module-level variables to hold the property 
values 



McGraw-Hill 11-25 

Creating a Web User 

Control – Step-by-Step - 2 

• Compile the control 

• Test the control 
– Drag the user control file from the Solution Explorer to 

the form’s design surface 

– Run the project 


